
Illuminating Zelda Rooms in the Latent Space of a Deep Convolutional
Generative Adversarial Network

Reilly Goddard

Abstract
Generative Adversarial Networks (GANs) are
now powerful and popular tools for the task of
content generation, but are not free from down-
sides. Generated content may be missing certain
important qualities and can be lacking in diver-
sity when training data is scarce. When paired
with quality diversity techniques such as Covari-
ance Matrix Adaptation MAP-Elites (CMA-ME),
generative adversarial networks capably generate
synthetic content that is not only high-quality but
also diverse. Here, we apply this technique to the
generation of playable levels for The Legend of
Zelda by exploring the latent space of the genera-
tive network in terms of the level characteristics
produced. We compare the resulting rooms gen-
erated to those generated via other methods in
terms of diversity of environment. We also use a
Zelda-playing agent to optimise for completabil-
ity of rooms generated and compare the gener-
ation methods further. We find that the MAP-
Elites algorithm represents a significant improve-
ment in terms of both completability and diversity
of rooms generated over a random search of the
GAN latent space. We also find that CMA-ME
in turn represents a significant improvement over
MAP-Elites in terms of diversity without com-
primising on completability.

1. Introduction
Generative adversarial networks (GANs) (Goodfellow et al.,
2014) represent a versatile tool for computer generation of
content, and have been applied to many areas, such as the
ones mentioned in (Yinka-Banjo & Ugot, 2020; Antipov
et al., 2017; Paganini et al., 2018; Lan et al., 2020). How-
ever, while GANs can often learn to produce high-standard
imitations of given content, they don’t necessarily gener-
alise to a diverse distribution of these imitations when given
limited datasets. Nor do they necessarily produce content
with particular desirable qualities which may be no trouble
for alternative, more heavily scripted content generation
algorithms. Previous attempts have been made to ‘steer’
GANs in a particular direction with respect to certain quali-
ties of the generated output - such as rotation and scale of
objects in generated pictures (Jahanian et al., 2019) - by ma-
nipulating the GAN’s latent space. While impressive, these
approaches are limited and require training of an additional

algorithm.

Quality diversity algorithms (QD) provide a promising path
around the diversity problem. They seek to ensure, for
a given search space, that not only are returned solutions
high quality with respect to a given objective function, but
that a diverse range of such solutions is returned. One
such approach to QD is illumination: choosing meaningful
dimensions along which to stratify the search space, per-
forming a genetic-algorithm-style search, and recording the
individuals from each strata with the highest score on the
objective (Mouret & Clune, 2015). This can be applied to
the latent space of a GAN in order to identify latent vec-
tors that produce certain qualities in the generated output
(Fontaine et al., 2020).

Video games provide a fantastic context for testing algo-
rithms in general due to their often predictable dynamics,
low-noise outputs and intuitive digital representations. One
particular area of interest in video game AI is procedural
content generation (PCG) - many games involve partially or
fully computer-generated environments/characters. How-
ever, PCG for video game levels can be a balancing act
between ensuring playability and giving the algorithm cre-
ative freedom.

Here, we present an illuminated GAN as a method for gen-
erating The Legend of Zelda (1986) levels. Using a GAN
rather than an algorithm with a hard-coded completability
constraint, as well as applying illumination should guaran-
tee a diverse range of generated levels that make use of a
larger share of the search space - usually a desirable quality
in video game levels and much other content. Our method
follows previous work which took a similar approach to
Super Mario Bros (1985) (Fontaine et al., 2020). We seek in
particular to generate levels which pose diverse challenges
to the player, for example varying the enemies fought and
the length of time required to progress during each level.
We will also evaluate these generated levels in terms of
their completability using an A* agent.

This paper is structured as follows: Section 2 describes the
dataset we use and how we evaluate it; Section 3 concerns
the models and algorithms used; Section 4 details the exper-
iments we carried out; Section 5 discussed related research;
and Section 6 evaluates our work and discusses future work
on this topic.



MLP Coursework 4 – Final Report (

Tiles Encoded
Tiles (Char-

acters)

Encoded
Tiles

(Numbers)

Graphic

Void - 0
Wall W 1
Floor F 2
Block B 3

Monster M 4
Element
(Lava,
Water)

P 5

Element +

Floor
O 6

Element +

Block
I 7

Door D 8
Stair S 9

Table 1. Encoding details of the tiles in Zelda excluding the 4
unknown tiles

2. Data Set and Task
2.1. Data

The Legend of Zelda as a game is made up of an overworld
and levels. The levels are subdivided into rooms, each
taking the space of a single screen, with only one room
shown to the player at a time. A room may contain anything
from Table 1, but must contain at least a single entry or exit
point. The game contains 9 individual levels with a total of
237 screens.

To access the individual rooms, data was pulled from the
The Video Game Level Corpus (VGLC) (Schrum et al.,
2020). In this repository, each room in game’s levels has
been saved as an txt file with tiles encoded into different
characters in a 11 x 16 grid. Before the data is input into the
GAN, the txt file is converted into a 2D array and characters
are encoded once again into numbers. It is then padded
with void tiles to be square and turned into a 3D array of
one-hot encodings of shape 14 x 16 x 16. Some rooms
contain tiles not described in the VGLC documentation and
which are not present in the full levels. In practice these
were rare enough to be ignored and we theorise that they
correspond to the starting locations of Link and bosses.

2.2. Evaluating Rooms

With the rooms used as training data, our goal is to train
a generator that is able to generate Zelda room that are
indistinguishable from the rooms given as training data.
After we have a generator that is capable of the above task,
we will apply the illumination methods MAP-Elites and
CMA-ME to the generator, in order to obtain diverse sets
of rooms.

To evaluate the rooms generated, two metrics were used.

First is to see if the room is completable. To do this, we use
an run basic checks such as ensuring there are at least two
doors in the room. Then an A* agent is used to find a path
between the doors if possible, possibly defeating monsters
on the way. The second metric is the average L2 similarity
between the rooms generated and all the training rooms in
their 3D one-hot array form.

L2(X,Y) =

√
n∑

i=1
(Xi − Yi)2

Xi and Yi are components of vector X and Y respectively

2.3. Evaluating Illumination Methods

An illumination method is successful if it produces diverse
and high quality outputs. Thus we evaluate MAP-Elites
and CMA-ME by: the number of rooms with unique sets of
characteristics they generate; the percentage of these rooms
that are completed by our agent; and the percentage of the
possible space of certain characteristics that they utilise.
These metrics will be discussed in further detail in Section
4.2, as it is beneficial to have read section 3 beforehand.

3. Methodology
3.1. Generative Adversarial Network

Generative Adversarial Networks were introduced by
(Goodfellow et al., 2014). A generator network G, and
a discriminator D will be trained at the same time. Gener-
ator G takes in a random vector and will generate a room
from that vector. Discriminator D will take rooms from the
original game and from G, and will try to distinguish which
are real and which are fake. These two models will es-
sentially compete against one another, the discriminator D
aims to minimize the probability of miss judgement, while
generator G aims to maximize that probability. The genera-
tor G’s training is complete when it can steadily generates
rooms that causes D to have the same accuracy as a random
classifier.

3.2. GAN Models

Deep Convolutional Neural Networks are used to train both
the generator and discriminator, the architecture of the net-
work is shown in figure 1 . For the generator it receives
a latent vector of size 16 and will pass it through the con-
volution layers until a 10 x 16 x 16 matrix is generated.
The discriminator receives a 10 x 16 x 16 matrix and will
pass it through the convolution layers producing a vector
of size 1, which indicates whether the room is from the
original game or not. The model uses strided convolutions
in the discriminator and fractional-strided convolutions in
the generator. Batchnorm are used in both the models af-
ter every layer. ReLU activation are used in all layers of
the generator where LeakyReLU activation are used in the
discriminator.

After training the GAN, the generator would be able to



MLP Coursework 4 – Final Report (

Figure 1. DCGAN architecture

generate a 10 x 16 x 16 matrices, and we would combine
the 10 channels back into one channel resulting with a 16 x
16 matrix, then we would crop away the bottom 5 rows of
the room resulting with a 11 x 16 room.

3.3. Quality Diversity Algorithms

Quality diversity algorithms - presented by (Gravina et al.,
2019) - are a set of algorithms which seek to generate a
diverse set of high quality solutions. In terms of Zelda
room generation, the goal of a QD algorithm is to search
for rooms that the GAN generates.

The generator of the GAN generates each room from a
latent vector it takes as input in a deterministic but not
human-predictable manner. Using a QD algorithm allows
us to search the latent vector space for specific features in
the output space.

3.4. Illumination

The Multi-dimensional Archive of Phenotypic Elites (MAP-
Elites) algorithm (Mouret & Clune, 2015) is an example
of QD. First, the user chooses several important charac-
teristics which they seek variety within - these are called
behavioural characteristics (BCs). Illumination methods
are QDs which use BCs, such as MAP-Elites. Together
the BCs form a behavior space and this space is tessellated
into hypervolumes. An evolutionary algorithm is used to
generate a population of individual samples via mutation op-
erations from an initial random population. We keep track

of which individual has the highest fitness or performance
within individuals that fall into the same BC hypervolume
and call this individual the elite. Once a sufficient number
of these hypervolumes are occupied by an elite, or once
another termination condition is met, MAP-Elites returns
the elite individuals.

Algorithm 1 MAP-Elites
X = {}, P = {}
for i = 1 to max_iter do

if i < population_size then
x = get_random_solution()

else
x′ = random_choice(X)
x = variation(x′)

end if
b = f eature_descriptor(x)
p = per f ormance(x)
if b not in X or p > P[b] then

X[b] = x
P[b] = p

end if
end for
return X, P

Covariance Matrix Adaptation MAP-Elites (CMA-ME) is
an improvement upon MAP-Elites, which uses Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), an evo-
lutionary algorithm for optimising a search. CMA-ME
maintains different so-called emitters, which are analogous
to CMA-ES instances. The emitters will rank solutions
higher if they fill previously unfilled cells, other solutions
are ranked on their improvement on the fitness of the current
cells. Thus CMA-ME is driven towards engaging in greater
exploration of the behaviour space than MAP-Elites.

3.5. The Agent

Originally we planned on using an agent trained using deep
reinforcement learning (Torrado et al., 2018) on the General
Video Game AI (GVGAI) framework. Unfortunately we
ran in to compatibility issues with various required pack-
ages and so instead we built an A*.

We will briefly explain how we apply the A* search algo-
rithm to our problem. This search algorithm treats every
tile in the room as a node, with adjacent tiles treated as
child nodes. Only reachable tiles will be considered - i.e.
floor tiles and the monster tiles (as you can defeat the mon-
ster and walk through it). Next, the agent will pick the
child node with the lowest cost, which is estimated by
f (n) = g(n) + h(n), where f (n) is the cost, g(n) is the cost
from current node to this child node and h(n) is a heuristic
function that estimates the cost of the path from the child
node to the goal. The above process is repeated until the
goal is reached.

A major advantage of using the A* agent is that it is always
guaranteed to find a path where possible and will return
the shortest path available. The downside is that the agent



MLP Coursework 4 – Final Report (

we implemented is only a path finding agent instead of an
agent that actually understand and plays the game like the
GVGAI agent mentioned above. Because of this our agent
is limited to collecting simple data for evaluations such as
the number of enemies beaten and the number of steps it
took to clear the room.

4. Experiments
This project is available on Github. 1

4.1. Training

As discussed previously, our neural net design followed that
of (Fontaine et al., 2020) and (Volz et al., 2018) and as such
we used similar hyperparameters for training. In particular
we used a learning rate of 5 × 10−5 for both the generator
and discriminator networks; a batch size of 32; RMSProp
as our optimisation method; and trained for 5000 epochs.
Our latent space was only 16-dimensional, compared to
(Fontaine et al., 2020)’s 32 dimensions. This is because
Zelda rooms contain fewer distinct tile types and each room
is smaller than a Mario level section generated by their
network.

We trained using these setting with three different seeds
and found the results to be easily satisfactory enough - in
terms of completability and L2 distance of rooms - to apply
illumination.

4.2. Behavioral Characteristics and Coverage

We chose the room properties as detailed in 2 as our be-
havioural characteristics for illumination. ‘Steps’ and
‘Kills’ are obvious metrics for determining how a room
feels to play and ones we would like to see significant vari-
ation in; if these metrics are low, the room will likely be
too simple to be entertaining; too high and the room may
be too difficult, especially for new players. These metrics
are measured by our agent and do not cover every possible
solution to each room, only a relatively short one. Through
experimentation on generated rooms it was determined that
the absolute number of steps to complete a room never
exceeded 40. The same was true of the original training
rooms. We discretised this range into 9 buckets: if a room
was uncompletable its ‘Steps’ characteristic was 0, other-
wise its ‘Steps’ characteristic was given by ceiling(number
of steps to complete room/5). This approach makes more
sense than using the exact number of steps to complete the
room because the exact number is not very important to
the room design; it is, however, typical for games to divide
their levels into difficulty brackets

‘Enemies’ and ‘Blocks’ and ‘Water’ are simple character-
istics which describe the makeup of a room. We observed
that the natural range of number of enemies in generated
rooms did not exceed 8. For the other two characteristics
we used a similar discretisation approach as for ‘Steps’.

1https://github.com/1645474/ZeldaGAN-LSI

We calculated the mean L2 distance between the training
rooms to be 6.81. Our ‘L2’ characteristic therefore tells
us whether the generated room is a greater or lesser L2
distance from the training rooms’ average than they were.

To measure the exploration of the algorithms examined, we
use a metric which we call ‘W/B/E Coverage’. This metric
attempts to estimate the percentage of the possible rooms -
described in terms of Water, Blocks and Enemies - which
the algorithm generated. Due to our discretisation of the
BCs, the number of possible rooms is extremely difficult
to accurately calculate given how the number of blocks,
water tiles and enemies are related to each other. There-
fore we estimate the number of possible BC combinations
by multiplying the number of values explored across all
generated and training rooms for each BC, yielding 2106.
We note that this number includes impossible rooms - i.e.
ones containing more than 84 tiles - and excludes possible
rooms (although most of these would be uncompletable).
For reference, 24 different W/B/C combinations are present
in the training rooms from the original game which would
give a W/B/C coverage of 1.14%. There are only 237 such
rooms however, and as such this percentage should not
be compared directly to those obtained during our exper-
iments which generated far more rooms. Steps and Kills
are unused for this metric as, by design, our agent finds the
simplest path through each room and as such provides little
information about the range of total possibilities of room
architecture.

4.3. Random Generation

As a baseline comparison we performed three runs of gen-
erating 10000 samples without any kind of illumination
method. The latent vectors for these samples were gener-
ated from a Gaussian distribution with mean 0 and variance
1. These samples were then classified by their behavioural
characteristics so as to have a set with unique characteris-
tics comparable to the set of elites generated by the other
two methods.

4.4. Map-Elites Performance

We ran the standard MAP-Elites algorithm using the be-
havioural characteristics and model described above. The
algorithm was run until 10000 individuals had been gen-
erated and evaluated. This experiment was repeated three
times with different initial populations to reduce the risk of
anomalous behaviour. The results are shown in table 3.

Compared to the random baseline, MAP-Elites generated
significantly more rooms with unique combinations of the
BCs (705 vs. 988) and a higher percentage of possible
rooms were explored (7.68% vs 8.51%). Furthermore, a
higher percentage of the rooms generated were completable
(71.12% vs. 77.69%). This higher completion rate is to
be expected as the latent vectors for MAP-Elites are cre-
ated from previously generated elites which are themselves
more likely to be completable than the average randomly
generated room as completability is used as the fitness met-



MLP Coursework 4 – Final Report (

Name Type Range Description
Steps Discretised 0-8 a measure of how many tiles the agent had to traverse to complete the room, or 0 if it couldn’t
Kills Literal 0-8 how many enemies the agent killed while completing the room

Enemies Literal 0-8 total number of enemies present in the room
Blocks Discretised 0-8 a measure of how many block tiles were present in the room
Water Discretised 0-8 a measure of how many water tiles were present in the room

L2 Binary 0-1 whether the mean L2 distance from the training rooms is greater than 8.61

Table 2. Behavioural Characteristics for the MAP-Elite Algorithm

ric.

4.5. CMA-ME Performance

We ran CMA-ME using the behavioural characteristics and
model described above. similarly to MAP-Elites, the algo-
rithm was run until 10000 individuals had been generated
and evaluated with this process being repeated three times.
The results are shown in table 3.

CMA-ME achieved better results across the board than both
the baseline and MAP-Elites: all of the best values obtained
occurred when on CMA-ME runs and the CMA-ME mean
values were superior to the mean values for the other meth-
ods. The gains made by CMA-ME over MAP-Elites for the
number of elites generated and W/B/E coverage are com-
parable to those of MAP-Elites over the random baseline -
i.e. CMA-ME is a very significant improvement. This indi-
cates that the measures employed by CMA-ME based on
CMA-ES to boost exploration are working effectively and
the fact we also saw an increase in completability suggests
this exploration didn’t come at the cost of another desirable
trait.

4.6. Generated Rooms

As well as any effects on exploration and completability,
another advantage of using an elites-based method is that
we are provided with a list of elite rooms broken down by
behaviour characteristics; thus we can chose any type of
room that takes the player’s fancy by its properties. For
example, we could chose a room with the highest Water
characteristic of any generated room but no blocks or ene-
mies 2. Rooms with more extreme BC values tend to have
higher L2 values and look less like human-designed rooms.
However, high L2 rooms, while less conventional, are are
often still completable - 79.92% of the time for CMA-ME
for instance. For example, the room shown in 3, which had
the largest Steps characteristic and even contains a void tile
in the middle of the room.

Full levels in the original game often contain more complex
objectives, such as obtaining a key in one room to unlock a
locked door in another. Some generated rooms appear to be
far too easy, but may be based on patterns present in rooms
which would normally contain such additional objectives.
For example, the addition of a key to the top-right area of
4 would make for a room which forces the player to walk
past enemies which then corner them between blocks and
walls.

Figure 2. (MAP-Elites generated) A completable elite with zero
enemies or blocks and a water level of seven.

Figure 3. (MAP-Elites generated) A high L2 room with Step = 8.

Where generated rooms fail to be completable they are
often not far off. A common problem is the presence of
only one door for example. Many such problems could
be easily fixed by a hard-coded program after generation
if these level-generation techniques where to be used in a
practical application. For example a script which detected
when a block tile was obstructing a door tile and removed
it would turn 5 into a challenging but legitimate room.

5. Related Work
The key concept for our experiment, illumination, was first
proposed by (Mouret & Clune, 2015). They used illumi-
nation to to perform searches in three different spaces to
design: neural network, simulated soft robot morpholo-



MLP Coursework 4 – Final Report (

Method Random MAP-Elites CMA-ME
1 2 3 Mean 1 2 3 Mean 1 2 3 Mean

Elites Generated 714 712 691 705.67 951 960 1053 988 1213 1044 1108 1121.67
Completable Elites 512 508 486 502 736 736 832 768 946 808 832 862
Completability (%) 71.67 71.35 70.33 71.12 77.39 76.67 79.01 77.69 77.99 77.39 79.51 78.30

W/B/E Coverage (%) 7.69 7.74 7.60 7.68 8.45 8.31 8.78 8.51 9.97 9.35 9.16 9.50

Table 3. Results of the three elite generation methods. All figures rounded (if applicable) to two decimal places.

Figure 4. (CMA-ME generated).

Figure 5. (CMA-ME generated) A slightly invalid room.

Figure 6. (CMA-ME generated) A room which uses several of
each B/W/E tile type.

gies, and a real, soft robotic arm. In their experiments,
they proved that the MAP-Elites illumination search out-
performs other search algorithms by a huge margin in dif-
ferent aspects such as reliability, precision and coverage.

GAN were first used by (Goodfellow et al., 2014). In their
experiments, they trained their GAN with some common
training datasets such as MNIST, CIFAR-10 and TDF. Com-
paring the results of their GAN with some other generator
like DMN, Stacked CAE, Deep GSN, they show that GANs
are able to generate better images. GANs quickly became
popular for generating contents and thus different mutations
of GAN were also developed including DCGAN (Radford
et al., 2016) which we used for our network.

Our experiment is based on (Fontaine et al., 2020), who suc-
cessfully applied illumination methods to a Mario DCGAN.
Applying illumination to Mario achieved a great success in
generating a diversity of levels each with their own features.
In Fortaines’s work, not only did they use illumination to
generate levels, they also used it to filter out levels that
were not optimised, leaving a generator that only generated
quality levels.

6. Conclusions
6.1. Evaluation

In this paper we have shown that the generation of Zelda
rooms to be a fruitful application of generative adversarial
networks and illumination methods to work effectively in
increasing the quality and diversity of the content gener-
ated by such GANs. In particular, we evaluated the per-
formance of the MAP-Elites and CMA-ME algorithms in
terms of their ability to generate high-quality rooms - mea-
sured by completability - and diverse rooms - measured
by the number of uniquely characterised elites generated
and W/B/E coverage. We found MAP-Elites be a signifi-
cant improvement over random room generation in terms of
completability and diversity and the CMA-ME algorithm
to be a significant upon that in terms of diversity. This
demonstrates that the problem of a small training dataset
can be somewhat overcome by by the additional degree of
exploration of the behaviour space forced by illumination.
Specifically with respect to procedural content generation
for video games, we have reinforced the idea put forward
in similar papers: that illuminated GANs can provide new
levels on-demand for players without being too predictable
and while giving them control over level characteristics.



MLP Coursework 4 – Final Report (

6.2. Future Research

The results of this paper, while promising, still leave some
areas and applications unexplored. It demonstrates that an
illuminated GAN can successfully take a small initial data
set and expand on it. Within the context of Zelda, only 237
individual screens were available for training, with each
screen representing a single room. However, each generated
room was treated as an individual piece, independent from
any larger level. This raises a few queries, namely how the
generated rooms would act together within the context of a
level, and if this method of generation would be applicable
to data sets outside of video games.

The Legend of Zelda functions differently from the Mario
game originally used with the method implemented in
(Fontaine et al., 2020). It contains a world map that links
smaller dungeons, or rooms together. While this may ap-
pear similar to the Mario game at first glance, it is func-
tionally far from the same. Mario’s levels involve continu-
ous, left-to-right scrolling and are functionally independent
from one another with a clear start and finish for each level.
Contrasting this, the levels in Zelda are made up of individ-
ual screens transitioned between via doorways, creating a
sprawling grid of interconnected screens. In addition to the
more complicated connectivity of the levels, the player has
a persistent inventory including items such as bombs and
keys that may be needed to progress.

Future iterations of this project could aim to create multi-
room levels with a properly connected grid. There are two
methods that come to mind when trying to accomplish this.
First, the current rooms could be grouped based on the loca-
tion of the doors, algorithmically turning a set of rooms into
a grid with a start room and end door. Then any remaining
doors on the bordering rooms without a connection could
be replaced with walls to limit the size of the level. Tech-
niques such as horizontal or vertical mirroring could also
be used to match rooms for level generation.

The second method would involve generating a graph gram-
mar which describes the architecture of the grid and re-
lations of the items within rooms, such as that used in
(Gutierrez & Schrum, 2020). This method would fit well
with an elites-based rooms generating method, as the graph
grammar specifies not only the locations but the key prop-
erties of each room which could then be searched for in a
set of elites whose behavioural characteristics are chosen
to match such potential key properties.

Both methods still greatly benefit from the use of illumina-
tion, due to the limited data set and diversity, but either of
these methods would provide a more usable output for the
end user. It would allow for the creation of fully playable
levels instead of a single room but present new challenges
in terms of agent AI.

Our results, as well as those such as (Fontaine et al., 2020),
(Steckel & Schrum, 2021), (Sarkar & Cooper, 2021), show
the techniques we used and similar techniques to be effec-
tive at level generation for 2D, grid-based video games in

general. These methods could obviously be applied to more
games, hopefully including more recent and complicated
ones.

However, these methods can in theory be applied to any
generation task which produces readily classifiable features
over which variation is desirable and there exists a clear
objective to optimise for other than just similarity to the
distribution of the training data.

References
Antipov, G., Baccouche, M., and Dugelay, J. Face aging

with conditional generative adversarial networks. In 2017
IEEE International Conference on Image Processing
(ICIP), pp. 2089–2093, 2017. doi: 10.1109/ICIP.2017.
8296650.

Fontaine, Matthew C., Liu, Ruilin, Khalifa, Ahmed, To-
gelius, Julian, Hoover, Amy K., and Nikolaidis, Ste-
fanos. Illuminating mario scenes in the latent space
of a generative adversarial network. 7 2020. URL
http://arxiv.org/abs/2007.05674.

Goodfellow, Ian J., Pouget-Abadie, Jean, Mirza, Mehdi,
Xu, Bing, Warde-Farley, David, Ozair, Sherjil, Courville,
Aaron, and Bengio, Yoshua. Generative adversarial net-
works. 6 2014. URL http://arxiv.org/abs/1406.2661.

Gravina, Daniele, Khalifa, Ahmed, Liapis, Antonios, To-
gelius, Julian, and Yannakakis, Georgios N. Procedu-
ral content generation through quality diversity. CoRR,
abs/1907.04053, 2019. URL http://arxiv.org/abs/1907.
04053.

Gutierrez, Jake and Schrum, Jacob. Generative adversarial
network rooms in generative graph grammar dungeons
for the legend of zelda, 2020.

Jahanian, Ali, Chai, Lucy, and Isola, Phillip. On the
"steerability" of generative adversarial networks. CoRR,
abs/1907.07171, 2019. URL http://arxiv.org/abs/1907.
07171.

Lan, Lan, You, Lei, Zhang, Zeyang, Fan, Zhiwei, Zhao,
Weiling, Zeng, Nianyin, Chen, Yidong, and Zhou, Xi-
aobo. Generative adversarial networks and its appli-
cations in biomedical informatics. Frontiers in Public
Health, 8:164, 2020. ISSN 2296-2565. doi: 10.3389/

fpubh.2020.00164. URL https://www.frontiersin.org/

article/10.3389/fpubh.2020.00164.

Mouret, Jean-Baptiste and Clune, Jeff. Illuminating search
spaces by mapping elites. CoRR, abs/1504.04909, 2015.
URL http://arxiv.org/abs/1504.04909.

Paganini, Michela, de Oliveira, Luke, and Nachman, Ben-
jamin. Accelerating science with generative adversar-
ial networks: An application to 3d particle showers in
multilayer calorimeters. Phys. Rev. Lett., 120:042003,
Jan 2018. doi: 10.1103/PhysRevLett.120.042003.
URL https://link.aps.org/doi/10.1103/PhysRevLett.120.
042003.

http://arxiv.org/abs/2007.05674
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1907.04053
http://arxiv.org/abs/1907.04053
http://arxiv.org/abs/1907.07171
http://arxiv.org/abs/1907.07171
https://www.frontiersin.org/article/10.3389/fpubh.2020.00164
https://www.frontiersin.org/article/10.3389/fpubh.2020.00164
http://arxiv.org/abs/1504.04909
https://link.aps.org/doi/10.1103/PhysRevLett.120.042003
https://link.aps.org/doi/10.1103/PhysRevLett.120.042003


MLP Coursework 4 – Final Report (

Radford, Alec, Metz, Luke, and Chintala, Soumith. Unsu-
pervised representation learning with deep convolutional
generative adversarial networks, 2016.

Sarkar, Anurag and Cooper, Seth. Generating and blending
game levels via quality-diversity in the latent space of a
variational autoencoder, 2021.

Schrum, Jacob, Gutierrez, Jake, Volz, Vanessa, Liu, Jialin,
Lucas, Simon, and Risi, Sebastian. Interactive evolu-
tion and exploration within latent level-design space of
generative adversarial networks, 2020.

Steckel, Kirby and Schrum, Jacob. Illuminating the space
of beatable lode runner levels produced by various gen-
erative adversarial networks, 2021.

Torrado, Ruben Rodriguez, Bontrager, Philip, Togelius,
Julian, Liu, Jialin, and Perez-Liebana, Diego. Deep rein-
forcement learning for general video game ai. In Com-
putational Intelligence and Games (CIG), 2018 IEEE
Conference on. IEEE, 2018.

Volz, Vanessa, Schrum, Jacob, Liu, Jialin, Lucas, Simon M.,
Smith, Adam M., and Risi, Sebastian. Evolving mario
levels in the latent space of a deep convolutional genera-
tive adversarial network. CoRR, abs/1805.00728, 2018.
URL http://arxiv.org/abs/1805.00728.

Yinka-Banjo, Chika and Ugot, Ogban Asuquo. A review
of generative adversarial networks and its application in
cybersecurity. Artificial Intelligence Review, 53:1721–
1736, 3 2020. ISSN 15737462. doi: 10.1007/s10462-
019-09717-4.

http://arxiv.org/abs/1805.00728

